Some Numerical Results from Meshless Linear Systems

نویسندگان

  • K. H. Leem
  • S. Oliveira
  • D. E. Stewart
چکیده

The meshless method plays an important role in solving problems in computational mechanics where conventional computational methods are not well suited. In this paper, we examine the property of the kernel matrix and investigate the convergence and timing performance of some well-known Krylov subspace methods on solving linear systems from meshless discretizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (‎MLRPI)

In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...

متن کامل

A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods

In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...

متن کامل

Unsymmetric meshless methods for operator equations

A general framework for proving error bounds and convergence of a large class of unsymmetric meshless numerical methods for solving well-posed linear operator equations is presented. The results provide optimal convergence rates, if the test and trial spaces satisfy a stability condition. Operators need not be elliptic, and the problems can be posed in weak or strong form without changing the t...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Special Techniques for Kernel-Based Reconstruction of Functions from Meshless Data

Here are three short stories on meshless methods using kernel techniques: • Any well–posed linear problem in the native space NΦ of a symmetric (strictly) positive definite kernel Φ can be successfully solved by symmetric meshless collocation. This applies to a large variety of standard linear PDE problems. • Relaxing interpolation conditions by allowing some small absolute error can significan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007